5 research outputs found

    Insights into the Sesquiterpenoid Pathway by Metabolic Profiling and De novo Transcriptome Assembly of Stem-Chicory (Cichorium intybus Cultigroup "Catalogna")

    Get PDF
    Stem-chicory of the "Catalogna" group is a vegetable consumed for bitter-flavored stems. Type and levels of bitter sesquiterpene lactones (STLs) participate in conferring bitterness in vegetables. The content of lactucin-and lactucopocrin-like STLs was higher in "Molfettese" than "Galatina" landrace stalks, regardless of the cultivation sites, consistently with bitterness scores and gustative differences. The "Galatina" transcriptome assembly resulted in 58,872 unigenes, 77% of which were annotated, paving the way to molecular investigation of the STL pathway. Comparative transcriptome analysis allowed the identification of 69,352 SNPs and of 1640 differentially expressed genes that maintained the pattern independently of the site. Enrichment analyses revealed that 4 out of 29 unigenes were up-regulated in "Molfettese" vs "Galatina" within the sesquiterpenoid pathway. The expression of two germacrene A -synthase (GAS) and one -oxidase (GAO) genes of the costunolide branch correlated positively with the contents of lactucin-like molecules, supporting that STL biosynthesis regulation occurs at the transcriptional level. Finally, 46 genes encoding transcription factors (TFs) maintained a differential expression pattern between the two varieties regardless of the growth site; correlation analyses among TFs, GAS, GAO gene expressions and STLs contents suggest that one MYB and one bHLH may act in the pathway

    Influence of cultivation sites on sterol, nitrate, total phenolic contents and antioxidant activity in endive and stem chicory edible products

    No full text
    Chicories produce a wide range of vegetables with important nutritional value. We determined the variation of sterol, total polyphenol, nitrate contents and antioxidant capacity (SC, TPC, NC, AC) in endive leaves and stem-chicory novel vegetables, cultivated in two Italian regions. Within a given area, the SC was similar in smooth- and curly leafed endives (106.3–176.0 mg/kg FW); sitosterol and stigmasterol were major fractions (45–56 versus 38–43%). The stem SC was independent of landrace (101.5–118.6 mg/kg FW); sitosterol prevailed on stigmasterol and fucosterol (73–76 versus 12–14% versus 8–9%); the latter reached 15.7 mg/kg FW, conferring value as potential antidiabetes food. The planting site affected the AC and TPC of endives (893.1–1571.4 μmTE/100 g FW, 30.8–76.1 GAE100/g FW) and chicory stems (729.8–1152.5 μmTE/100 g FW; 56.2–124.4 GAE100/g FW), while the NC was recurrently below dangerous thresholds. PCA showed that environment was the major cause of variation, though it modestly affected these parameters

    Transcriptome driven characterization of curly- and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway

    No full text
    Diving into the genetics of endives Genetic analyses show molecular differences that could explain why curly endives taste bitterer than smooth ones. Donato Giannino of the Institute of Agricultural Biology and Biotechnology and colleagues in Italy analyzed the genetic differences between curly and smooth endives, a leafy vegetable used in salads. They found more than 3000 single sequence variations in genes distinguishing the two types from each other. Twenty six genes were involved in the biosynthesis of sesquiterpenoids, metabolites important for plant survival that also contribute to the bitter taste of endives and have antimalarial, sedative and analgesic effects when isolated for humans. Their levels were higher in curly than in smooth endives, potentially contributing to their more bitter taste. The information expands the genetic data available on endives for breeding programs
    corecore